Eight Proteins Turn Mouse Stem Cells into Egglike Cells

The identification of the transcription factors that elicit oocyte growth will aid reproductive biology research and might help women with fertility issues, scientists say.

Written byAshley Yeager
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: An ovarian organoid made of egg-like cells (blue) generated from stem cells in culture with mouse ovarian somatic cells.
COURTESY OF NOBUHIKO HAMAZAKI

A core set of eight proteins can transform stem cells from mice into cells that look a lot like immature egg cells called oocytes. The egglike cells could not undergo meiosis to cut the total chromosomes in half as they should, but they could be fertilized by sperm and then divide until they hit the eight-cell stage of embryonic development, researchers report today (December 16) in Nature.

“This demonstrates that you can go directly from stem cells to oocytes. I think that is exciting,” Petra Hajkova, a developmental epigeneticist at Imperial College London who was not involved in the study, tells The Scientist. The work, she notes, will help researchers explore the basic biology of oocyte development. In the future, says study coauthor Nobuhiko Hamazaki of Kyushu ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control