Enzyme Improves CRISPR

A smaller Cas9 protein enables in vivo genome engineering via viral vectors.

kerry grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, NIAIDFor all the myriad genome-editing tricks of the CRISPR/Cas9 system, slipping into cells by way of viral vector was previously not one of them. The gene for the large Cas9 enzyme—which originated from the Streptococcus pyogenes bacterium—maxed out the carrying capacity of vectors’ genomes. Researchers from the Broad Institute and MIT and their colleagues have now found that a smaller Cas9 from a different bacterium can do the job with ease. They described their modified approach in Nature today (April 1).

“The paper illustrates that there is more to the Cas9 world than the first characterized protein (nuclease), and that new avenues will open as the toolbox is expanded,” Rodolphe Barrangou of North Carolina State University who was not involved in the study wrote in an e-mail.

As part of a bacterial and archaeal immune response commonly referred to as CRISPR, the Cas9 enzyme cleaves a pre-specified sequence of DNA. Biologists have repurposed Cas9 to precisely rewrite genetic code and manipulate gene function in the lab.

The most commonly employed Cas9, measuring in at 4.2 kilobases (kb), comes from S. pyogenes. While it’s an efficient nuclease, the molecule’s length pushes the limit of how much genetic material an adeno-associated virus (AAV) vector can load up on, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Pairing Protein Engineering and Cellular Assays

Pairing Protein Engineering and Cellular Assays

Lonza
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo

Products

Metrion Biosciences Logo

Metrion Biosciences launches NaV1.9 high-throughput screening assay to strengthen screening portfolio and advance research on new medicines for pain

Biotium Logo

Biotium Unveils New Assay Kit with Exceptional RNase Detection Sensitivity

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo