Exit Strategy

Scientists come up with a better way to watch cells leave blood vessels.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WAYS OUT: Within a day of culturing in the microvascular device, cells can be found spread but contained within the lumen (1), extravasated and adhered to the outside of the lumen (2), penetrating the endothelial barrier and contacting the hydrogel matrix (3), extravasated and migrated away from the lumen (4), adhered within the lumen and circular in morphology (5), and occluded in small vessels (6). Inset: Zoomed-out view of the microvessels (red) and tumor cells (green).© GEORGE RETSECK; INSET COURTESY OF MICHELLE CHEN, INTEGR BIOL, 5:1262-71, 2013

When a cancer becomes metastatic, its cells travel from the original tumor site via the blood. Although the process of intravasation—cancer cells entering the bloodstream—has been well studied, how they exit, or extravasate, from blood vessels is less clear. Part of the problem is that previous extravasation assays have either been physiologically relevant, as in the case of using live zebrafish, or high throughput, as with microfluidic devices, but not both. Roger Kamm’s team at the Massachusetts Institute of Technology has now come up with a microfluidic device that incorporates natural vascular structures.

Previous microfluidic devices have used monolayers of endothelium—the cells that line blood vessels—to mimic the vascular environment, says Michelle Chen, lead developer of the new system. But these cells become more permeable ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH