Exit Strategy

Scientists come up with a better way to watch cells leave blood vessels.

ruth williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WAYS OUT: Within a day of culturing in the microvascular device, cells can be found spread but contained within the lumen (1), extravasated and adhered to the outside of the lumen (2), penetrating the endothelial barrier and contacting the hydrogel matrix (3), extravasated and migrated away from the lumen (4), adhered within the lumen and circular in morphology (5), and occluded in small vessels (6). Inset: Zoomed-out view of the microvessels (red) and tumor cells (green).© GEORGE RETSECK; INSET COURTESY OF MICHELLE CHEN, INTEGR BIOL, 5:1262-71, 2013

When a cancer becomes metastatic, its cells travel from the original tumor site via the blood. Although the process of intravasation—cancer cells entering the bloodstream—has been well studied, how they exit, or extravasate, from blood vessels is less clear. Part of the problem is that previous extravasation assays have either been physiologically relevant, as in the case of using live zebrafish, or high throughput, as with microfluidic devices, but not both. Roger Kamm’s team at the Massachusetts Institute of Technology has now come up with a microfluidic device that incorporates natural vascular structures.

Previous microfluidic devices have used monolayers of endothelium—the cells that line blood vessels—to mimic the vascular environment, says Michelle Chen, lead developer of the new system. But these cells become more permeable ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer