Exosomes Vital for Heart Repair

Reparations after a heart attack in mice depend not on stem cells, but on the exosomes they secrete.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mouse hearts after a heart attack were injected with a vehicle (CTRL), exosomes from normal human dermal fibroblasts (NHDF-XO), or exosomes from cardiosphere-derived cells (CDC-XO).A.G.-E. Ibrahim et al., Stem Cell ReportsAn early-stage clinical trial, published in the Journal of the American College of Cardiology in January, showed that a certain type of stem cell injected into the human heart could help repair damage after a heart attack. But according to a mouse study published in Stem Cell Reports today (May 6), the cells themselves may be unnecessary. Rather, exosomes—tiny, lipid-bound vesicles secreted by the stem cells—appear to be the essential ingredient for healing injured cardiac tissue.

“This study is very exciting,” said Guo-Chang Fan, who studies exosomes at the University of Cincinnati but did not participate in the research. He added that the results open up the possibility of a “cell-free therapeutic strategy.”

The clinical trial to evaluate tissue repair after heart attack involved the autologous injection of certain cardiac stem cells, called cardiosphere-derived cells. So far, the study has shown that patients given the cells have had increases in living heart muscle and decreases in scar tissue, although it’s not clear yet whether these effects translate to any health benefits.

Eduardo Marbán, a cardiologist at the Cedars-Sinai Heart Institute in Los Angeles who led the clinical trial, had suspected that the responses to the cardiosphere-derived cells came from indirect mechanisms, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH