Farmed Atlantic Salmon Likely Passed Virus to Wild Pacific Salmon

New genomic analyses reveal that piscine orthoreovirus first came to the Pacific in 1989, around the same time that salmon farms in the area started importing Atlantic salmon eggs from Europe.

Written byAbby Olena, PhD
| 4 min read
Two researchers take samples from salmon using dissecting tools and small collection tubes.

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Researchers dissect wild Pacific salmon tissues for molecular analysis and viral genomic sequencing.
AMY ROMER

Pacific salmon (Oncorhynchus spp.) are important to the fishing industry, Indigenous peoples, and endangered local populations of killer whales (Orcinus orca), but several salmon species have declined to the point of near extinction. To meet the demand for fish consumption, farmed salmon have become common, but aquaculture is a known spreader of diseases that infect wild populations. In a study published May 26 in Science Advances, researchers demonstrate that piscine orthoreovirus (PRV)—different strains of which cause anemia, jaundice, cardiomyopathy, and death in fish—was likely transmitted to wild Pacific salmon from farmed Atlantic salmon (Salmo salar) in the late 1980s.

“The paper shows convincingly that there’s repeated exchange or transmission between wild and domesticated species,” says Martin Krkosek, an ecologist at the University of Toronto who was not involved in the work. “We’ve suffered through the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo