Fecal Transplant Restores Youth to Old Mice

Microbiota from young mice reversed some aspects of aging and enhanced brain health in aged mice.

Written byRoni Dengler, PhD
| 3 min read
3-800x560
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Learning a new language or how to play a musical instrument becomes more difficult with age, as does remembering where the car keys are. These drops in learning and memory parallel changes in the gut microbiome, the collection of bacteria and other microorganisms that colonize the intestines and have a meaningful effect on health.

John Cryan, a neuroscientist at University College Cork, and his colleagues revealed recently in Nature Aging that microbes transferred from young to aged mice reversed aging-associated changes in brain immunity and metabolism. The study suggests that the microbiome may be an appropriate therapeutic target for treating age-related cognitive decline.

“It’s a fabulous paper,” said Jane Foster, a neuroscientist who conducts similar research at McMaster University, but did not participate in the new work. “[It’s] starting to answer the mechanistic questions about how the microbiome influences the brain in a way that we can now build on.”

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH