Fossilized Dino Bones Are Home to Diverse Microbial Communities

A study fails to detect ancient proteins among the microbes, adding to the debate about whether peptides can survive tens of millions of years underground.

Written byCatherine Offord
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: The team collected fresh fossil samples from Dinosaur Provincial Park in Alberta, Canada.
© ISTOCK.COM, POWEROFFOREVER

Fossilized dinosaur bones host a diverse community of microbes but probably not ancient proteins, according to a study published last week (June 18) in eLife. The work, based on analyses of Cretaceous-age samples, supports the idea of fossilized bones as open systems that interact with the sediment around them and adds fuel to an ongoing debate about how long proteins and other biomolecules can resist degradation.

“It confirmed what I thought,” says David Martill, a paleobiologist at the University of Portsmouth in the UK who was not involved in the study. “Bones are such porous things. . . . They’re not a barrier to bacteria or fungi or any other microscopic organism—they’re open to being invaded.”

Some of the most widely publicized reports of ancient proteins have been based on samples that are tens ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH