From Toxins to Therapeutics

Researchers are finding new drugs for chronic pain and autoimmune diseases by modifying animal venom-derived molecules that target the nervous and immune systems.

Written byDan Cossins
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

A Caribbean sun anemone (Stichodactyla helianthus)FLICKR, OMAR SPENCE PHOTOGRAPHYAnimal venoms are a veritable treasure trove of proteins and peptides fine-tuned by millions of years of evolution to kill or incapacitate both predator and prey. Usually delivered via injection—through an assortment of fangs, barbs, spines, and stingers—venom toxins evade the body’s defenses to seek out target cells, where they prevent blood cells from clotting, for example, or block ion channels on nerve cells to shut down or subvert their function.

Such high molecular specificity and potency has long made venom a promising source of drug candidates. More than 30 years ago, the US Food and Drug Administration approved the first venom-derived drug—a therapy for hypertension, called Capoten, copied from a pit viper venom peptide. A handful of venom-derived drugs have since been approved for cardiovascular disease, and in 2004, a venom-derived painkiller hit the market. Now, thanks to an increasing knowledge of the human nervous and immune systems, the pipeline from fang to pharmacy is expanding even further, with more pain medications and drugs that target autoimmune diseases such as multiple sclerosis and rheumatoid arthritis.

“We’re really at beginning of something exciting,” said Glenn King, a molecular biologist and spider venom researcher at the University ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research