From Toxins to Therapeutics

Researchers are finding new drugs for chronic pain and autoimmune diseases by modifying animal venom-derived molecules that target the nervous and immune systems.

Written byDan Cossins
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

A Caribbean sun anemone (Stichodactyla helianthus)FLICKR, OMAR SPENCE PHOTOGRAPHYAnimal venoms are a veritable treasure trove of proteins and peptides fine-tuned by millions of years of evolution to kill or incapacitate both predator and prey. Usually delivered via injection—through an assortment of fangs, barbs, spines, and stingers—venom toxins evade the body’s defenses to seek out target cells, where they prevent blood cells from clotting, for example, or block ion channels on nerve cells to shut down or subvert their function.

Such high molecular specificity and potency has long made venom a promising source of drug candidates. More than 30 years ago, the US Food and Drug Administration approved the first venom-derived drug—a therapy for hypertension, called Capoten, copied from a pit viper venom peptide. A handful of venom-derived drugs have since been approved for cardiovascular disease, and in 2004, a venom-derived painkiller hit the market. Now, thanks to an increasing knowledge of the human nervous and immune systems, the pipeline from fang to pharmacy is expanding even further, with more pain medications and drugs that target autoimmune diseases such as multiple sclerosis and rheumatoid arthritis.

“We’re really at beginning of something exciting,” said Glenn King, a molecular biologist and spider venom researcher at the University ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies