Gene Editing Treats Blood Disease

Revising a dysfunctional gene in vivo for the first time, researchers successfully restore blood clotting in hemophiliac mice.

Written byAnnie Gottlieb
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA COMMONS, AARON LOGAN

Using precision DNA-cleaving enzymes called zinc finger nucleases (ZFNs) to replace a dysfunctional gene in vivo, researchers successfully restored nearly normal blood clotting in mice with the human blood disease hemophilia B.

The feat, published online yesterday (June 26) in Nature, represents the first time scientists have been able to use ZFN-enabled "genome editing" to permanently correct the DNA of cells within a living animal, and provides hope that the same technique may one day treat a wide range of human diseases.

"This is a significant extension of the zinc finger nuclease technology that could help human medicine," said Mario Capecchi, a professor of human genetics at the University of Utah and a 2007 Nobel Prize winner for gene-targeting discoveries that made possible today's profusion ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies