Genetic Variant Discovered in Amish Protects from Heart Disease

Researchers link a missense mutation in the B4GALT1 gene to lower levels of LDL cholesterol and the blood clotting factor fibrinogen.

Written byAbby Olena, PhD
| 3 min read
An illustration shows circular red blood cells running into a yellow cholesterol blockage in a transverse section of an artery on a blue and purple background
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A gene variant initially uncovered in the genomes of people belonging to the Old Order Amish has been linked in a new study to lower levels of fibrinogen (a blood clotting factor) and low-density lipoprotein (LDL) cholesterol—both of which, when elevated, increase a person’s risk of developing cardiovascular disease. The work, published today (December 2) in Science, not only connects a missense mutation in the enzyme-coding gene beta-1,4-galactosyltransferase 1 (B4GALT1) with heart health in humans, but confirms the link in mice.

“This is a very good example of the utility of small founder or isolated populations in predicting genetic effects of genes that could not easily be identified even in the very big human biobanks that are available worldwide,” Caroline Hayward, who studies human genetics at the University of Edinburgh and did not participate in the study, writes in an email to The Scientist.

May Montasser, a genetic epidemiologist at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies