Genome Reveals Clues to Giraffes’ “Blatantly Strange” Body Shape

The physiological demands of that long neck get support from a gene involved in strengthening bones and blood vessels, researchers find after inserting the sequence in mice.

Written byAmanda Heidt
| 5 min read
giraffe, genetics & genomics, CRISPR, gene editing, genome, physiology, hypertension, bone growth, techniques, mouse model

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: Giraffes appear to be just as strange on the inside as they are on the outside. A new study reveals how these animals have evolved highly mutated genes in order to support their odd physique.
MOGENS TROLLE

With their long necks, giraffes are a poster child for evolutionary oddities, but scientists know very little about the genetic underpinnings of such an extreme adaptation. An updated giraffe genome, published March 17 in Science Advances, reveals new insights into how the species accommodates what Rasmus Heller, an evolutionary geneticist at the University of Copenhagen and an author on the new study, calls a “blatantly strange body architecture.” Giraffe’s bones grow faster than any other animal, for instance, and the blood pressure required to pump blood up its six-foot neck would be fatal to humans. “If you’re an evolutionary biologist, it’s a no-brainer to try to explain what drove that animal to look ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • amanda heidt

    Amanda first began dabbling in scicom as a master’s student studying marine science at Moss Landing Marine Labs, where she edited the student blog and interned at a local NPR station. She enjoyed that process of demystifying science so much that after receiving her degree in 2019, she went straight into a second master’s program in science communication at the University of California, Santa Cruz. Formerly an intern at The Scientist, Amanda joined the team as a staff reporter and editor in 2021 and oversaw the publication’s internship program, assigned and edited the Foundations, Scientist to Watch, and Short Lit columns, and contributed original reporting across the publication. Amanda’s stories often focus on issues of equity and representation in academia, and she brings this same commitment to DEI to the Science Writers Association of the Rocky Mountains and to the board of the National Association of Science Writers, which she has served on since 2022. She is currently based in the outdoor playground that is Moab, Utah. Read more of her work at www.amandaheidt.com.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA