Glial Ties to Persistent Pain

Immune-like cells in the central nervous system are now recognized as key participants in the creation and maintenance of persistent pain.

Written byMark R. Hutchinson
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

IT TAKES A VILLAGE: Glia (cyan) in the central nervous system are normally considered support for neurons, but research is revealing how these cells can contribute to the aberrant firing of pain pathways. (Rat hippocampus shown here. Neurofilaments in green; DNA in yellow.)TOM DEERINCK, NATIONAL CENTER FOR MICROSCOPY AND IMAGING RESEARCH

When someone is asked to think about pain, he or she will typically envision a graphic wound or a limb bent at an unnatural angle. However, chronic pain, more technically known as persistent pain, is a different beast altogether. In fact, some would say that the only thing that acute and persistent pain have in common is the word “pain.” The biological mechanisms that create and sustain the two conditions are very different.

Pain is typically thought of as the behavioral and emotional results of the transmission of a neuronal signal, and indeed, acute pain, or nociception, results from the activation of peripheral neurons and the transmission of this signal along a connected series of so-called somatosensory neurons up the spinal cord and into the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

January 2018

The Science of Pain

New research on an age-old ailment

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH