Gut Infections Help Shield Intestinal Neurons from Future Damage

In mice, a kind of immune memory appears to protect the cells against future harm, a finding that could provide insight into treatments for irritable bowel syndrome and other inflammatory digestive conditions.

black and white photograph of stephanie melchor
| 4 min read
Colorized scanning electron micrograph of Salmonella bacteria in intestinal tissue

Salmonella invading the intestinal epithelium

NIAID

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Digestive infections can wreak havoc on the enteric nervous system, leading to persistent digestive issues. But, if there is an upside to them, it’s that they may steel the gut against future assaults: the intestinal neurons of mice previously infected with either intestinal worms or pathogenic bacteria were more resilient to Salmonella infections, researchers report November 11 in Cell.

Unlike intestinal epithelial cells, whose snappy turnover helps the gut rapidly heal from tissue destruction, intestinal neurons usually suffer lasting damage during infections and inflammatory conditions such as irritable bowel syndrome (IBS) or Crohn’s disease. Since these neurons are important for everything from controlling gut motility to hormone secretion, this damage has enduring and often painful consequences.

Lead study author Daniel Mucida, an immunologist at The Rockefeller University and HHMI investigator, and his colleagues had recently observed that Salmonella infection triggers long-term enteric neuron death in mice. However, they also saw ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • black and white photograph of stephanie melchor

    Annie Melchor

    Stephanie "Annie" Melchor is a freelancer and former intern for The Scientist.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio