Gut Infections Help Shield Intestinal Neurons from Future Damage

In mice, a kind of immune memory appears to protect the cells against future harm, a finding that could provide insight into treatments for irritable bowel syndrome and other inflammatory digestive conditions.

Written byAnnie Melchor
| 4 min read
Colorized scanning electron micrograph of Salmonella bacteria in intestinal tissue
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Digestive infections can wreak havoc on the enteric nervous system, leading to persistent digestive issues. But, if there is an upside to them, it’s that they may steel the gut against future assaults: the intestinal neurons of mice previously infected with either intestinal worms or pathogenic bacteria were more resilient to Salmonella infections, researchers report November 11 in Cell.

Unlike intestinal epithelial cells, whose snappy turnover helps the gut rapidly heal from tissue destruction, intestinal neurons usually suffer lasting damage during infections and inflammatory conditions such as irritable bowel syndrome (IBS) or Crohn’s disease. Since these neurons are important for everything from controlling gut motility to hormone secretion, this damage has enduring and often painful consequences.

Lead study author Daniel Mucida, an immunologist at The Rockefeller University and HHMI investigator, and his colleagues had recently observed that Salmonella infection triggers long-term enteric neuron death in mice. However, they also saw ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white photograph of stephanie melchor

    Stephanie "Annie" Melchor got her PhD from the University of Virginia in 2020, studying how the immune response to the parasite Toxoplasma gondii leads to muscle wasting and tissue scarring in mice. While she is still an ardent immunology fangirl, she left the bench to become a science writer and received her master’s degree in science communication from the University of California, Santa Cruz, in 2021. You can check out more of her work here.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH