Gut Organoid Transplants Produce Colorectal Cancer in Mice

By implanting patient- or rodent-derived mini-guts into mice, scientists can rapidly create more-accurate murine models of the disease

Written byDiana Kwon
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A cross section of a tumor arising in the colon of an organoid-based mouse model of colorectal cancerKEVIN O'ROURKE

In recent years, scientists have developed organoids, stem-cell-derived organs-in-a-dish, for a number of tissues, including kidneys, guts, and brains. While these mini-organs provide a useful tool to study both development and disease, many researchers still consider animal models necessary to validate the findings made in vitro. In two back-to-back studies published today (May 1) in Nature Biotechnology, scientists combined these two approaches by transplanting organoids into mice to develop a faster, more accurate murine model of colorectal cancer (CRC).

CRC is one of the most common cancers in the Unites States, and the second leading cause of cancer-related deaths in the country. Despite the need for better treatments for this disease, genetically engineered animal models of CRC are still quite limited.

“Mice, for reasons that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo