Hiding in Plain Sight

Researchers using metagenomics and single-cell sequencing identify a potential new bacterial phylum.

Written byKim Smuga-Otto
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Kryptonite ©DC ComicsFLICKR, MARK ANDERSONStudies on 16s ribosomal RNA (rRNA) sequences have opened scientists’ eyes to the complexity of microbial communities, but some bacteria evade detection. At the US Department of Energy (DOE) Joint Genome Institute User Meeting held in Walnut Creek, California, last week, researchers announced the genomic identification of a potential new bacterial phylum, Candidatus Kryptonia, based on their study of samples isolated from four hot springs located in North America and Asia. Altogether, the DOE team sequenced 22 Kryptonia genomes.

“It’s always difficult to claim absolutely a new lineage until you’ve done some biochemical tests,” said microbial ecologist Jack Gilbert of Argonne National Laboratory and the University of Chicago, who was not involved with the study, “but, genomics-wise, this thing appears to fit outside of our current understanding.”

Genomic analyses place Kryptonia in the Bacteroidetes superphylum, whose members thrive in the gut and in marine environments. If confirmed, Kryptonia would be the first extreme thermophile found in this group. Kryptonia appears to have acquired this characteristic through horizontal gene transfer from Archaea.

“This work is very exciting in that it seems to contribute to several populations present in high pH neutral thermal systems that aren’t accounted for yet,” geomicrobiologist Bill Inskeep of Montana State University’s ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH