How Bacteria “Walk” Across a Surface

Scientists identify the coordinated sequence of pili movements that Pseudomonas aeruginosa use to move.

Written byDiana Kwon
| 3 min read
Pseudomonas aeruginosa

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Pseudomonas aeruginosa
© ISTOCK.COM, DR_MICROBE

The paper

L. Talà et al., “Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements,” Nat Microbiol, 4:774–80, 2019.

Bacteria use long, threadlike attachments known as pili to interact with their environments. In some microorganisms, a specific form of the filaments called type IV pili also enable locomotion.

The molecular motors powering type IV pili are some of the strongest found in nature, generating large forces to retract the filaments from a surface, says Alexandre Persat, a biophysicist at the Swiss Federal Institute of Technology in Lausanne. “We were wondering how this is coordinated—whether these pili are used for motility in a random way, or if they synchronize the activity of their motors.”

Type IV pili movements are rapid, making them tough to see with traditional microscopes. So Persat and his colleagues used interferometric scattering microscopy (iSCAT), a technique recently developed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

living with bacteria 2019 the scientist june issue
June 2019

Living with Bacteria

Can pathogens be converted to commensals?

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies