How to Grow a Mouse Embryo in a Dish

Researchers are taking the concept of three-dimensional cell culture beyond single organoids to develop embryos from cells.

Written byRoni Dengler, PhD
| 3 min read
istock
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Christine and Bernard Thisse, a wife-and-husband team at the University of Virginia, have created what is perhaps the most sophisticated model of the mammalian embryo to date. Their model offers a beating heart, budding muscles, blood vessels, gut, and nervous system, all in a culture dish.

Unlike organoids, which model parts of single organs, the duo coaxed aggregates of mouse embryonic stem cells to carry out fundamental processes of development to become embryo-like entities, or embryoids. The embryoids are a step beyond organoids because they incorporate additional components that make organs functional, such as smooth muscles and nerves. According to the researchers, the innovation “promises to be a powerful tool for modeling disease.”

“If we have models that provide much more tissue and interaction between tissues, that’s the way to go because an organ needs to function in relationship with the rest of the body, and especially with vasculature and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH