Human Skeletal Stem Cell Found

Researchers recovered the cells that give rise to bone and cartilage from fetal and adult bone marrow and also derived them from induced pluripotent stem cells.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: This image shows tissue derived from a single human skeletal stem cell. Bone is in yellow, blue indicates cartilage, and marrow is pictured in red.
CHAN AND LONGAKER ET AL.

Three years after its discovery of skeletal stem cells in mice, the same research team has identified the human version of this precursor to bone, cartilage, and stroma, the bone marrow’s support cells. In a study published today (September 20) in Cell, the authors show that these skeletal stem cells are both self-renewing and multipotent.

“For many years there’s been this debate about a true human skeletal stem cell. This study unequivocally demonstrates that it’s there and that it is self-renewing,” says Richard Oreffo, a stem cell biologist at the University of Southampton in the UK who did not participate in the work. “There’s still a lot to do, but this is a tremendous step forward for the field.”

Michael ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours