Ibrahim Cissé’s Tools Provide a Lens to Watch RNA Production

The MIT physicist has demonstrated the importance of clusters of RNA polymerase and other transcription mediators in regulating RNA production.

Written byJef Akst
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Ibrahim Cissé (center) and colleagues COURTESY OF DENIS PAISTE, MIT MATERIALS RESEARCH LABORATORY

Ibrahim Cissé spent hours as a child taking apart and trying to rebuild electronics. Other times, he would reenact NASA space shuttle liftoffs, tipping a chair backward onto the floor and then climbing in, his knees and face pointed skyward. He’d shake the chair to simulate shooting through Earth’s atmosphere as he watched Hollywood movies about space exploration. Captivated by the US space program as well as the idea of the American dream he saw portrayed on the big screen, the Niger native begged his parents to allow him to come to the US for college. They agreed, and with the help of a host family in North Carolina, he moved across the Atlantic at age 17.

In 2002, Cissé transferred from community college to North Carolina Central University (NCCU), where he worked with physicist Kinney ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

September 2020

Human Paths

Archaeology and genetics are starting to resolve humanity’s origin and spread

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH