Imaging Chromatin to Deduce Function from Form

Researchers describe their tools for probing how the physical shape of the genome affects genes’ function.

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

ABOVE: © ISTOCK.COM, CHRISCHRISW

In the mid-1800s, Lionel Smith Beale, an English physician and microscopist at King’s College in London, peered through his microscope at a smear of saliva and mucus coughed up by a man with cancer of the larynx. Beale carefully drew what he saw: cells unconnected with each other and radically diverse in size and shape. He noted that the cells’ nuclei varied in number, size, and appearance. His observations, published in 1860, provide one of the first descriptions of how cancer can ripple and distort the typical appearance of the cell’s nucleus, a sign of the genetic havoc the disease wreaks.

More than 150 years later, scientists are still trying to understand how the physical shape of the genome changes in response to disorder and disease. To fit six and a half feet of DNA inside a single nucleus, the double helix wraps around coin-shaped histone ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Marissa Fessenden

    This person does not yet have a bio.

Published In

December 2018

Invisible Borders

An emerging appreciation for membraneless organelles and the liquid dynamics that shape them

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo