In Vivo Gene Therapy Cures Infertility in Mice

Mice rendered infertile through ovary cell–targeting mutations gave birth to seemingly normal offspring through natural mating after a virus-based gene therapy was injected into their ovaries.

black and white image of young man in sunglasses with trees in background
| 2 min read
a white mouse huddles with several of her nine-day-old pups

© ISTOCK.COM, ANYAIVANOVA

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Within healthy ovaries, granulosa cells supply developing oocytes with nutrients and secrete hormones that regulate their further development. Without those cells’ support, oogenesis can’t occur, rendering an animal infertile. However, scientists at Kyoto University found a way to restore granulosa function in mice bred to have a granulosa-impairing mutation, according to research published April 27 in Cell Reports Medicine. They say the approach could someday lead to new infertility treatments for humans as well.

The experimental mice were bred to have silenced Kitl genes, which produce a molecule that mediates communication between oocytes and granulosa and fosters ovarian follicle development. In the absence of Kitl expression, oogenesis was prevented in female mice. Conceptually, developing a gene therapy to deliver a functional Kitl copy was simple, lead author and Kyoto University molecular geneticist Takashi Shinohara explains. However, figuring out a delivery mechanism that could actually reach the granulosa cells was difficult and took some trial and error.

See “Rat Sperm Generated from Stem Cells

Much like the blood-brain barrier that shields the brain from harmful substances in the blood, granulosa cells and oocytes are protected by a blood-follicle barrier that Shinohara says is notoriously difficult to cross. “I tried all the available viruses,” Shinohara says, including multiple variations of adeno-associated viruses (AAV), which are commonly used to deliver therapeutic DNA into the nucleus of cells so that it can be transcribed without permanently altering the host genome or being passed on to offspring. “Other viruses were injected but didn’t reach these granulosa cells. Only the AAV9 . . . could penetrate [the barrier].”

Not only did the gene therapy successfully rescue the damaged granulosa cells in 8 out of 10 mice, but those mice went on to have healthy offspring—something that Shinohara says caught him by surprise.

“I wasn’t sure they would become pregnant,” Shinohara tells The Scientist. “I was surprised to see those babies!”

He adds that the offspring grew up “pretty normally” and that the female offspring were still infertile, indicating that, as expected, the gene therapy didn’t get passed on to the next generation.

“AAVs are of special interest because they should not integrate into the host genome and replicate indefinitely or uncontrollably,” Harvard Medical School reproductive biologist Kaitlyn Webster, who didn't work on the study, tells The Scientist over email. “It’s important that the authors showed the gene-editing viral payload was not in the offspring of the treated mother, which is reassuring that the AAV is working as hoped and not permanently changing the maternal genome. This might suggest AAV therapy can be tunable or reversible. It is important to continue this investigation across more generations.”

See “‘Three-Parent’ IVF Trialed for Infertility

Webster adds that success in fertility research is often defined “only by the occurrence of pregnancy or birth,” but that she has unanswered questions about the overall health of the offspring as well as of the AAV-treated mothers, such as whether the gene therapy resulted in behavioral or metabolic changes after the fact.

Questions remain and further work is needed, but Shinohara says his study hints at a future where AAV-mediated gene therapies become an in vivo infertility treatment for humans. “The question is how risky this procedure is,” he says, but “in principle it should work.”

Keywords

Meet the Author

  • black and white image of young man in sunglasses with trees in background

    Dan Robitzski

    Dan is a News Editor at The Scientist. He writes and edits for the news desk and oversees the “The Literature” and “Modus Operandi” sections of the monthly TS Digest and quarterly print magazine. He has a background in neuroscience and earned his master's in science journalism at New York University.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit