Infographic: How to Make a Brain Organoid

Mini-brains can be grown in culture or printed.

Written byAshley Yeager
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

To grow brain organoids, researchers have traditionally cultured human induced pluripotent stem cells (iPSCs), which develop into clumps of tissue with embryonic features. That tissue is then bathed in proteins to spur the development of nervous-system progenitor cells, which are put into nutrient-containing oil droplets and floated in a spinning bioreactor. After 10 days, neurons begin to form, and in about a month, the neurons begin to spontaneously arrange themselves into different regions that mimic an intact brain.

To accelerate this process and gain more control over the arrangement of cells in the organoid, researchers have started using 3-D printers. The cells start in a hydrogel-based bio-ink, which is then printed into oil droplets surrounded by a lipid layer. Using separate nozzles, the printer can arrange different cell types in specific patterns. Once printed, the cellular constructs can be transferred to a liquid medium so they can continue to grow ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo