Infographic: How Does Cell Senescence Drive Aging and Disease?

The accumulation of zombie-like cells seems to accelerate aging and promote aging-related disease. Researchers are trying to figure out how.

katya katarina zimmer
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

ABOVE: © CATHERINE DELPHIA

Senescent cells accumulate with age. This may result in higher levels of certain senescence-associated secretory phenotype (SASP) proteins, which researchers believe drive aging-related processes and promote aging-related diseases. And senescence, scientists are coming to understand, is itself mediated by cellular processes associated with aging.

Untangling which cellular processes drive senescence is a major challenge to researchers, in part because those pathways are interrelated. In addition, there may well be multiple factors that contribute to the accumulation of senescent cells, including the tissue or organ in question, a person’s genetic makeup, and environmental stressors she is exposed to.

This can occur when protective pieces of DNA at the ends of chromosomes grow shorter with successive cell divisions, or when their internal structure unfolds, a process called “telomere uncapping.” Both have been shown to trigger senescence in vitro.

As DNA repair mechanisms erode with age, cells can acquire ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • katya katarina zimmer

    Katarina Zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field. Following an internship with The Scientist in 2017, she has been happily freelancing for a number of publications, covering everything from climate change to oncology.

Published In

March 2020

Rising Seas, Dead Trees

Ghost forests are a warning about climate change

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo