Infographic: How Pregnancy Changes Fat Tissue

Researchers propose a mechanism by which a protein produced in the placenta may trigger blood vessel growth and enlarge fat cells.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Pregnancy triggers a remodeling of fat tissue, according to findings from researchers at the University of Massachusetts. In the team’s proposed mechanism, pregnancy-associated plasma protein A (PAPPA), which is produced in the placenta and elsewhere in a pregnant person’s body, acts on insulin-like growth factor binding protein-5 (IGFBP-5), freeing up the insulin-like growth factor-1 (IGF-1) that typically binds to it. IGF-1 signaling subsequently triggers fat remodeling, including the expansion of blood vessels (angiogenesis) into the tissue (vascularization). These changes are likely to be important for maintaining insulin-driven regulation of glucose levels in the blood, the researchers conclude, although the mechanism for this is not clear.

Read the full story.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Catherine Offord

    Catherine is a science journalist based in Barcelona.

Published In

August 2021

The Maternal Microbiome

Resident bacteria in mom’s gut may shape fetal development

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb