Infographic: How Worms that Reside in the Gut Could Influence Health

Research in animals and people supports a range of mechanisms by which the parasites affect physiology and immune responses.

| 18 min read

Register for free to listen to this article
Listen with Speechify
0:00
18:00
Share

Scientists are only just beginning to understand how parasitic helminth worms inhabiting the mammalian intestine and other tissues manipulate their hosts. In at least some cases, helminths may help dampen inflammation, and researchers are pursuing new therapies for autoimmune and inflammatory conditions that tap into worm-mediated signaling. A selection of the species—some of which infect animals other than humans—and proposed mechanisms, based mainly on in vitro and animal studies, are illustrated below.

Helminths release hundreds of different molecules, some of which are packaged into extracellular vesicles that may be taken up by host cells.

Helminth infection may trigger B cells to produce IgG4, an antibody suggested to be involved in anti-inflammatory responses.

Several worm species are associated with altered microbiome compositions.

Some of the molecules secreted by N. americanus have shown promise in mouse models of inflammatory bowel disease.

A protein called ES-62, released by Acanthocheilonema viteae, may inhibit the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Catherine Offord

    Catherine is a science journalist based in Barcelona.

Published In

December 2021 Cover
December 2021

Return of the worms

Researchers are carefully considering the therapeutic potential of helminths

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours