Macrophages in Mice Shuttle Mitochondria to Neurons in Need

The findings could represent a novel mechanism for relieving inflammatory pain.

katya katarina zimmer
| 4 min read
mitochondria inflammation pain neuron

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, WIR0MAN

Long believed to be simple, pathogen-eating immune cells, macrophages have a far more extensive list of job duties. They appear to have specialized functions across body tissues, help repair damaged tissue, play a key role in regulating inflammation and pain, and participate in other roles scientists are just beginning to reveal.

Now, a group of researchers in the Netherlands has identified a mechanism by which macrophages may help resolve inflammatory pain in mice. In a study recently posted as a preprint to bioRxiv, they report that the immune cells shuttle mitochondria to sensory neurons that innervate inflamed tissue, and that this helps resolve pain. The researchers speculate that the mechanism could replenish functional mitochondria in neurons during chronic inflammatory conditions, which is associated with dysfunctional mitochondria.

“I think the transfer of mitochondria is quite convincing,” Jan Van den Bossche, an immunologist at Amsterdam University Medical Center ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • katya katarina zimmer

    Katarina Zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field. Following an internship with The Scientist in 2017, she has been happily freelancing for a number of publications, covering everything from climate change to oncology.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio