Malarial Host-Parasite Clash Causes Deadly Blood Sugar Drop

Scientists say they have finally figured out why some people with severe malaria end up with dangerous hypoglycemia, also reporting that the condition starves the parasite into changing tactics from virulence to transmission.

Written byNatalia Mesa, PhD
| 4 min read
Pink and purple <em>Plasmodium</em> parasites inside red blood cells
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Malaria is one of the world's deadliest diseases, responsible for 627,000 deaths worldwide in 2020 alone. In severe cases, patients develop dangerously low blood sugar levels. This complication is especially perilous in children and can be fatal if left untreated, but why it develops in the first place has been a long-standing mystery.

Now, in a study published Friday (July 15) in Cell Metabolism, researchers describe the complicated tug-of-war between host and parasite that appears to explain malaria-associated hypoglycemia. According to the study, the host’s blood sugar drops to dangerously low levels as the malaria parasite destroys blood cells. This starves the parasite, which responds by becoming less likely to kill the already-fragile host—but more likely to spread to others.

The researchers explain that both the host and the parasite are demonstrating adaptive behaviors during this process. The host is ridding itself of the parasite by lowering its blood sugar, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH