Mice Gene-Edited While Still in the Womb

CRISPR reagents injected into the amniotic fluid inactivated a gene in the fetuses that would normally cause lung disease and kill the mice a few hours after birth.

Written byChia-Yi Hou
| 2 min read
CRISPR mice lungs gene genetic editing disease womb fetus

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM
NEAGONEFO

Scientists have used CRISPR technology to edit out a lung-disease–causing gene while mice were in utero, rescuing the function of the lung and not affecting other organs, they reported on Wednesday (April 17) in Science Translational Medicine. Following the inactivation of the target gene, the mice survived after being born, unlike untreated animals.

Because mice carrying the disease will die soon after birth, the gene-editing intervention needed to occur before delivery, say the authors. They injected CRISPR-Cas9 into the amniotic fluid of pregnant mice whose fetuses carried a mutated version of the SFTPC gene that codes for a protein that helps prevent the lung from collapsing when emptied, states the paper.

The authors report that gene editing was successful in the target cells in the lungs of 20 percent of the mice.

“What’s exciting about this paper is that they showed specific targeting to just the affected ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH