Microbiota Manipulations

Two research teams develop tools for tinkering with a bacterial genus prominent in human guts.

ruth williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

BUG CONTROL: Researchers modified an endogenous Bacteroides promoter sequence to be inducible—it can be turned on or off in mice by adding (right) or omitting (left) anhydrotetracycline (aTC) to the animal’s drinking water. The aTC binds to the TET repressor protein (yellow), thereby preventing its suppression of gene expression. As a proof of principle, the researchers integrated the modified promoter upstream of a sialidase gene in the bacterium’s genome, and showed they could control the enzyme’s activity in mouse intestines.© GEORGE RETSECK

The past decade has seen a surge in microbiome research and, with it, a greater appreciation of the relationships between resident microbes and their hosts. But the focus is shifting, says microbiologist and immunologist Justin Sonnenburg of Stanford University. A major goal of the field, at least in terms of human research, he says, is “to leverage our gut microbes so they can perform tasks,” such as deliver drugs or take physiological measurements.

But engineering gut bacteria is not straightforward, primarily because researchers have relatively little experience with the species that live in and on our bodies, says gastroenterologist Suzanne Devkota of Cedars-Sinai Medical Center in Los Angeles. “There are 1,001 ways to genetically manipulate E. coli,” she says, “but that’s not particularly useful in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

July/August 2017

DNA Erector Sets

New blueprints for the double helix

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer