Synthetic Organelles Let Researchers Control Cell Behavior

A technique that reversibly bundles tagged cargo into artificial membraneless compartments gives scientists the ability to switch cell processes on and off.

Written byCatherine Offord
| 3 min read
Abstract graphene structures

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, OLEMEDIA

Eukaryotic cells’ contents are organized into various compartments, including membraneless organelles formed by a process known as liquid-liquid phase separation. Researchers have experimented with creating artificial versions of these compartments to control various aspects of cell biology—blocking particular cellular reactions, for example, or creating new sites for protein translation. Now, a team led by Matthew Good at the University of Pennsylvania Perelman School of Medicine has combined several recent advances into a technique for creating membraneless organelles that reversibly store and release specific intracellular cargo, letting researchers control cell behavior even more finely than before.

To make the organelles, Good’s team engineered yeast (and later human cells) to produce a tweaked version of a protein from the worm C. elegans that would spontaneously coalesce to form droplets, or condensates, in the cell cytoplasm. Then, to mark particular peptides as cargo for these artificial organelles, the researchers ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

November cover of The Scientist
November 2021

Embryonic Eavesdropping

Animals start listening even before they enter the world

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo