More Than Skin Deep

Elaine Fuchs has worked on adult stem cells since before they were so named, figuring out how multipotent epidermal cells renew or turn into skin or hair follicles.

head shot of blond woman wearing glasses
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

ELAINE FUCHS
Professor, Molecular Genetics and Cell Biology Rockefeller University, New York City Howard Hughes Medical Institute Investigator
MATTHEW SEPTIMUS
In 1978, Elaine Fuchs was just one year into a postdoctoral fellowship at MIT when her PhD advisor, Charles Gilvarg of Princeton University, called to tell her about an available academic position at the University of Chicago. “He remembered that my family was from Chicago and that I might want to go back,” says Fuchs, now a professor of molecular genetics and cell biology at Rockefeller University in New York City. “I told him that was fine but that I was still doing my postdoc, and he said that he would recommend me anyway. I could treat the interview as practice, he explained, to get a sense of what it was like, for when I was ready to get a job.” Fuchs was invited for the interview and the university’s biochemistry department took its time deciding, finally offering her an assistant professorship in the fall of 1979. “I was relaxed, as it never occurred to me that I would get a job offer,” she says. “Possibly, the department took their time because I had told them I hadn’t applied anywhere else.” Fuchs requested another year to finish her postdoc in Howard Green’s laboratory, where she was studying the biology of cultured human keratinocytes, the most abundant cell type found in the epidermis, the skin’s protective barrier at our body’s surface.

“I finished a full three years at MIT. What was nice in that last year was that I could plan out exactly what I wanted to do in my own lab. I wrote for and had my NIH grant before I arrived in Chicago. It was a really nice recipe to hit the ground running. Now, looking back, it was kind of a poised-to-succeed situation,” says Fuchs.

“We’re learning that it is the basic mechanisms that stem cells use to make and repair tissue that become hijacked in cancer.”

Since her time in the Green lab almost four decades ago, Fuchs has been hooked on decoding and unraveling the complicated biology of epidermal cells. In her own labs at the University of Chicago and now ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome