Mosquito Genomes Galore

Whole-genome sequences of 16 different mosquito species reveal rapid evolution and could inform malaria research.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Anopheles stephensiWIKIMEDIA, CDCTwo papers published today (November 27) in Science announce the completion and preliminary analyses of the genomic sequences of 16 species of mosquitoes, including those that are vectors for the malaria parasite. The sequences, which are around 200 million base pairs each, reveal that mosquitoes are rapidly evolving, exhibiting high degrees of gene gains, losses, shuffling, and even transmission between closely related species.

“Both papers provide really powerful information on the evolution of different malaria mosquito species,” wrote James Logan of the London School of Hygiene and Tropical Medicine in an e-mail to The Scientist. “Comparisons between the [species] are likely to reveal the reason why some mosquitoes are better at transmitting malaria than others, [which is] vital for the future control of malaria,” he added.

Each year, there are hundreds of millions of cases of malaria globally that cause hundreds of thousands of deaths. In 2002, as part of an ongoing effort to understand mosquito biology and ultimately reduce disease transmission, the genome sequence of Anopheles gambiae—the major malaria vector of sub-Saharan Africa—was published.

“Having one genome is a great start, but it’s not enough,” said Nora ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH