Most Accurate CRISPR Gene Editing Yet

A tweaked Cas9 nuclease reduces off-target effects to levels below that of previous versions of the enzyme.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ISTOCK, MOLEKUULTo minimize the off-target effects of CRISPR-based genome editing, researchers have designed a version of Cas9, the enzyme that cuts DNA, that avoids mistakes with unprecedented precision. Mutating one piece of the nuclease, called REC3, reduced off-target effects to below that of other high-fidelity Cas9 enzymes.

“If you mutate certain amino acid residues in REC3, you can tweak the balance between Cas9 on-target activity and improved specificity,” coauthor Janice Chen, a graduate student in Jennifer Doudna’s lab at the University of California, Berkeley, says in a press release. “We were able to find the sweet spot where there is sufficient activity at the intended target but also a large reduction in off-target events,”

Chen and her colleagues had set out to understand why certain variants of Cas9—namely, eSpCas9(1.1) and SpCas9-HF1—are more specific to their target sequences and make fewer off-target cuts than the natural version. That’s when they identified REC3’s role in sensing the accuracy with which the enzyme binds to an intended stretch of DNA: in the event of a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies