Mutations Not Tied to Metastasis

Clinical cases link immune changes to a cancer’s spread through the body, but find no role for so-called “driver” mutations.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, PATHODozens of genetic mutations are known to facilitate cancer progression, but metastasis doesn’t appear to be controlled by additional changes to the genome. A study of hundreds of colorectal cancer patients published in Science Translational Medicine this week (February 24) found patterns of these “driver” mutations are similar between primary tumors and metastatic ones.

Instead, the researchers discovered a link between metastasis and several immune-related changes, including alterations in gene expression, decreased abundance of cytotoxic lymphocytes, and a decline in lymphatic vessels.

“Areas that have been a focus of great interest in the field for many years are really not the primary reasons for metastasis in clinical course,” Edgar Engleman, who researches immunoncology at Stanford University but was not part of this study, told The Scientist. “And in fact, the finger is pointing again and again and again to the immune response.”

Jérôme Galon, head of the integrative cancer immunology laboratory at INSERM in Paris, said there has been very little known about what pushes a cancer to metastasize. To find some clues, he and his colleagues gathered genetic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH