New Enzyme Makes CRISPR More Powerful

xCas9 enables more precisely targeted gene editing.

Written byShawna Williams
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

hand with tweezers inserting piece of DNAISTOCK, VCHALAn enzyme dubbed xCas9 enables researchers to target more sites in the genome than with traditional CRISPR-Cas9 editing, while reducing off-target effects. The technique was reported earlier this week (February 28) in Nature by Broad Institute chemical biologist David Liu and his colleagues.

"This is very impressive and important work," University of Massachusetts Medical School molecular biologist Erik Sontheimer tells Science.

Though relatively new, CRISPR-Cas9 has become the gene-editing tool of choice in many labs due to its power, ease of use, and versatility. But it does have some notable limitations, as detailed by a Nature news article, including the necessity of targeting a particular sequence called a PAM near the gene to be modified, which limits researchers’ ability to make very specific genetic changes.

“Relief from the PAM restriction is quite important,” Albert Jeltsch of the University of Stuttgart in Germany tells Nature. “Some of these elements are quite small, and then the restriction can be quite relevant.”

Liu and his colleagues used a laboratory technique to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo