New Enzyme Makes CRISPR More Powerful

xCas9 enables more precisely targeted gene editing.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

hand with tweezers inserting piece of DNAISTOCK, VCHALAn enzyme dubbed xCas9 enables researchers to target more sites in the genome than with traditional CRISPR-Cas9 editing, while reducing off-target effects. The technique was reported earlier this week (February 28) in Nature by Broad Institute chemical biologist David Liu and his colleagues.

"This is very impressive and important work," University of Massachusetts Medical School molecular biologist Erik Sontheimer tells Science.

Though relatively new, CRISPR-Cas9 has become the gene-editing tool of choice in many labs due to its power, ease of use, and versatility. But it does have some notable limitations, as detailed by a Nature news article, including the necessity of targeting a particular sequence called a PAM near the gene to be modified, which limits researchers’ ability to make very specific genetic changes.

“Relief from the PAM restriction is quite important,” Albert Jeltsch of the University of Stuttgart in Germany tells Nature. “Some of these elements are quite small, and then the restriction can be quite relevant.”

Liu and his colleagues used a laboratory technique to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours