New Genes = New Archaea?

Genes acquired from bacteria contributed to the origins of archaeal lineages, a large-scale phylogenetic analysis suggests.

Written byMolly Sharlach
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Carotenoid-producing haloarchaea impart a red color to salt ponds in San Francisco Bay.WIKIMEDIA, GROMBO

While mutation and sexual reproduction drive genetic innovation in many eukaryotes, for life’s exclusively unicellular domains—archaea and bacteria—horizontal gene transfer is a critical mechanism for gaining new traits. And genes acquired from bacteria appear to have played an important role in forming major taxa of archaea, according to a phylogenetic analysis of more than 25,000 archaeal gene families. The study, published today (October 15) in Nature, also suggests that genetic transfers from bacteria to archaea are at least five times more common than from archaea to bacteria.

“We tend to think of evolution as proceeding in a gradual fashion, with the drip, drip, drip of point mutations accumulating along different lineages, and that leads to differentiation and new species,” said study coauthor William Martin of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH