New Technique Enables Observation of Accessible Chromatin

A test tube-based genome-labeling technique has been brought under the microscope.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ATAC DO: The next generation of a technique called ATAC-seq, which captures and sequences active regions of DNA (1), allows for the visualization of these regions as well. In ATAC-see, a so-called transposome (2) uses a transposase enzyme (yellow) to insert a pair of fluorescent DNA tags into open regions of chromatin (3). Upon insertion, the DNA is cleaved (4) and the tags are visible under a microscope (5) human cells’ open chromatin labeled red). These tagged sections of DNA are then sequenced.© GEORGE RETSECK; XINGQI CHEN, STANFORD UNIVERSITY

In the limited space of the nucleus, most of the genome is tightly folded, leaving accessible only the parts that need to be transcribed. There is “huge interest” in determining which elements of the genome are active in a given cell type, says Howard Chang of Stanford University. This was Chang’s motivation for developing a technique called ATAC-seq (assay for transposase-accessible chromatin)—in which DNA tags (acting as transposons) are enzymatically integrated into open regions of the genome and then used to identify those regions through sequencing.

Chang described ATAC-seq in 2013, but says, “we were breaking the cell open to get this information, so we didn’t have any sense of the 3-D organization of the [accessible] elements.”

Fast-forward three years, and Chang has now developed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

January 2017

Driving Out Disease

Scenarios for the genetic manipulation of mosquito vectors

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies