Opinion: The Central Dogma of Mitochondrial Genetics Needs Rewriting

The recent discovery of 17 people who have inherited maternal and paternal lines of mitochondrial DNA has major ramifications for medical and ancestry research.

Written byJohn D. Loike
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, CREVIS2

John D. Loike, a Professor of Biology at Touro College and University Systems, writes a regular column on bioethics for The Scientist.

Until last month, it was generally believed that mitochondria and their DNA are exclusively maternally inherited in humans. In a provocative report in PNAS, scientists identified 17 people from three unrelated families with a high level of mitochondrial DNA (mtDNA) inherited from both mothers and male ancestors. Now, it’s time to rethink the dogma of mitochondrial inheritance.

Earlier human studies using human polyploid embryos generated by IVF only detected paternal mtDNA up until the eight-cell stage of development. There was, however, one report in 2002 of a single male with mitochondrial myopathy, a condition affecting muscles, who expressed both maternal and paternal mtDNA. This observation is surprising to see in humans, even though many species (including algae, plants, yeast, and Drosophila) exhibit strict paternal ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • John Loike

    John Loike serves as the interim director of bioethics at New York Medical College and as a professor of biology at Touro University. He served previously as the codirector for graduate studies in the Department of Physiology Cellular Biophysics and director of Special Programs in the Center for Bioethics at Columbia University College of Physicians and Surgeons. His biomedical research focuses on how human white blood cells combat infections and cancer. Loike lectures internationally on emerging topics in bioethics, organizes international conferences, and has published more than 150 papers and abstracts in the areas of immunology, cancer, and bioethics. He earned his Ph.D. from the Albert Einstein College of Medicine of Yeshiva University.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella