Organoids Don’t Accurately Model Human Brain Development

A new study suggests that growing in a stressful environment prevents “brains-in-a-dish” from growing in the same way as their in vivo counterparts.

Written byDiana Kwon
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Brain organoids, small pieces of the human cerebral cortex grown in the lab, are becoming valuable scientific tools. By modeling the growth of brain cells and structures, these “brains-in-a-dish,” which are self-organizing tissues generated from skin or blood cells that are reprogrammed into stem cells, can allow scientists to examine early development and the processes underlying neurodevelopmental diseases.

Despite their potential, organoids still have some critical limitations. In a study presented this week at the Society for Neuroscience meeting in Chicago, Arnold Kriegstein, a stem cell biologist at the University of California, San Francisco, and his team demonstrate that human brain organoids don’t accurately recapitulate all aspects of development. After comparing cells from organoids to those from normally developing tissue, his team reports that organoids have altered gene expression patterns and lack the cellular diversity in found in the human brain.

The Scientist spoke to Kriegstein about the study and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies