Origin of Frog-Killing Chytrid Fungus Found

DNA evidence points to Asian amphibians as the source of a fatal disease that has been wiping out frogs across the globe.

ruth williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Oriental fire-bellied toad from South KoreaFRANK PASMANSIn recent decades, large populations of frogs, toads, and salamanders in disparate regions of the world have been succumbing to the deadly chytridiomycosis disease caused by the fungus Batrachochytrium dendrobatidis. The sudden and dramatic die-offs have prompted a large-scale research effort to pinpoint the source of the deadly fungus, and now the results of that research are in.

After analyzing the genomes of hundreds of B. dendrobatidis samples collected from wild and captive amphibians in Australia, North and South America, Africa, Asia, and Europe, an international team of scientists reports in Science today (May 10) that the pathogen likely emerged from East Asia at the beginning of the 20th century.

“It’s the sort of study that we’ve needed for quite some time in the amphibian-chytrid world,” says ecologist Jason Rohr of the University of South Florida who was not involved with the study. “There’s been a lot of debate regarding the origins of the pathogen and a global analysis of this scope and scale was needed to resolve that.”

“They have done years of work to gather and culture chytrid [specimens] from around ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development