Pathway to Polio Virulence Revealed

Using epidemiological and laboratory data, scientists have mapped out a sequence of mutations through which the attenuated oral polio vaccine reverts to a virulent virus.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Illustration of a single poliovirus virionCDC, MEREDITH BOYTER NEWLOVE, JAMES ARCHERPolio is nearly eradicated. Now much of the risk of polio outbreaks comes not from wild poliovirus but from the oral vaccine, which comprises attenuated viruses. These viruses accumulate mutations that allow them to circulate among under-vaccinated populations, regain virulence, and even cause outbreaks. Now, scientists have mapped out a series of mutations that might explain how some cases of vaccine-derived polio can arise, according to a study published today (March 23) in Cell.

Using data from outbreaks of this circulating vaccine-derived poliovirus, researchers at University of California, San Francisco (UCSF), and Tel-Aviv University, in collaboration with others, have identified genetic changes through which they believe the attenuated oral polio vaccine re-evolves virulence. An attenuated vaccine virus genetically engineered to carry the virulence mutations that the researchers identified caused paralysis in mice.

“In polio, we know that viruses that are more replicatively fit in cell culture are usually more paralytic in humans, or more paralytic in mice, for that matter, but it’s been a qualitative relationship,” Mike Famulare, who works on polio at the Institute for Disease Modeling in Washington and was not involved in the study, told The Scientist.

In the past, all three oral polio vaccine (OPV) ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit

BIOVECTRA

BIOVECTRA is Honored with 2025 CDMO Leadership Award for Biologics

Sino Logo

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo