New Patient Tumor Cell Models Rapidly Predict Cancer Therapy Outcomes

A new benchtop microfluidic device generates patient-derived tumor micro-organospheres that allow for real-time cancer therapy decisions.

Written byJennifer Zieba, PhD
| 4 min read
3d illustration proteins with lymphocytes , t cells or cancer cells
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Evidence from the clinic and research labs in the last couple of decades shows that there is no single cure for cancer. Within a group of patients, individuals with what look to be identical tumor types react to the same treatment very differently. This often results in a waste of time and quality of life for those that don’t respond, and it has impeded cancer treatment development for years. As a result, precision oncology, the molecular profiling of tumors to identify patient-specific treatments, has become a necessary tool in the battle against cancer.

Recently, researchers developed in vitro patient-derived cell models to guide personalized care in cancer.1 “The challenge is to make a platform technology that can truly be used in the clinic, and to be very reproducible, fast, and scalable,” said Xiling Shen, a professor in biomedical engineering at Duke University. While training to be an electrical engineer, Shen ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jennifer Zieba, PhD headshot

    Jen earned her PhD in human genetics at the University of California, Los Angeles. She is currently a project scientist in the orthopedic surgery department at UCLA where she works on identifying mutations and possible treatments for rare genetic musculoskeletal disorders. Jen enjoys teaching and communicating complex scientific concepts to a wide audience and is a freelance writer for The Scientist's Creative Services Team.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
An image of a DNA sequencing spectrum with a radial blur filter applied.

A Comprehensive Guide to Next-Generation Sequencing

Integra Logo
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel