Personalized Cancer Vaccines

A dendritic cell vaccine targeting melanoma patients’ tumor-specific mutations can activate a broad range of cancer-fighting T cells.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Follicular dendritic cellWIKIMEDIA, ASZAKAL Most tumors express mutant proteins not made by healthy cells, and the range of these mutated proteins varies from patient to patient. Exploiting these individual variations, a team led by researchers from the Washington University School of Medicine in St. Louis has created personalized dendritic cell vaccines using these mutated peptides, called neoantigens, which can activate a diverse range of melanoma patients’ cytotoxic T-cells in vivo.

A study assessing the immunologic effects of the vaccines—not their therapeutic benefit—is published today (April 2) in Science.

The work is an early proof of principle that immunization against these neoantigens results in patient immune responses, Nina Bhardwaj, director of immunotherapy at the Tisch Cancer Institute at Mount Sinai Hospital in New York City who was not involved in the work, wrote in an e-mail to The Scientist.

“Scientifically and immunologically, this was a tour de force as the first example of a personalized vaccine strategy,” said Jeffrey Weber, a tumor immunologist at the Moffitt Cancer Center in Tampa, Florida, who also was not involved in the study.

In a 2013 study, coauthor Beatriz Carreno, a human immunologist in the oncology division at the Washington ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH