Personalized Cancer Vaccines

A dendritic cell vaccine targeting melanoma patients’ tumor-specific mutations can activate a broad range of cancer-fighting T cells.

head shot of blond woman wearing glasses
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Follicular dendritic cellWIKIMEDIA, ASZAKAL Most tumors express mutant proteins not made by healthy cells, and the range of these mutated proteins varies from patient to patient. Exploiting these individual variations, a team led by researchers from the Washington University School of Medicine in St. Louis has created personalized dendritic cell vaccines using these mutated peptides, called neoantigens, which can activate a diverse range of melanoma patients’ cytotoxic T-cells in vivo.

A study assessing the immunologic effects of the vaccines—not their therapeutic benefit—is published today (April 2) in Science.

The work is an early proof of principle that immunization against these neoantigens results in patient immune responses, Nina Bhardwaj, director of immunotherapy at the Tisch Cancer Institute at Mount Sinai Hospital in New York City who was not involved in the work, wrote in an e-mail to The Scientist.

“Scientifically and immunologically, this was a tour de force as the first example of a personalized vaccine strategy,” said Jeffrey Weber, a tumor immunologist at the Moffitt Cancer Center in Tampa, Florida, who also was not involved in the study.

In a 2013 study, coauthor Beatriz Carreno, a human immunologist in the oncology division at the Washington ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo