Reprogrammed Müller Glia Restore Vision in Mice

A double gene-transfer therapy transformed the non-neuronal cells into rod photoreceptors in the retinas of animal models of congenital blindness.

Written byAshley Yeager
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Two gene injections reprogram Müller glia into rod photoreceptors in the retinas of blind mice and partially restore the animals’ vision, researchers report today (August 15) in Nature. With further development, the technique could lead to treatments for conditions such as retinitis pigmentosa, in which rods degenerate.

“The biggest takeaway from this paper is that it is possible to reprogram Müller glia in mammalian retina and partially restore visual function,” study coauthor Bo Chen, an ophthalmologist and regenerative biologist at the Icahn School of Medicine at Mount Sinai in New York City, tells The Scientist.

Based on previous studies in fish and other animals, the results aren’t a surprise, notes Javier Francisco-Morcillo, a cell biologist at the University of Extremadura in Badajoz, Spain, who was not involved in the study. Studies like this, which demonstrate the capacity to use mammalian Müller glia as intrinsic stem cells for efficient retinal neuron ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies