Researchers Probe Genetics Behind a Lizard’s Odd Immune System

Deletions in the sleepy lizard genome leave it without an important type of T cells found in most other vertebrates.

Written byHannah Thomasy, PhD
| 4 min read
Tiliqua rugosa, sleepy lizard, on reddish soil in western Australia
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Tiliqua rugosa—also known as the sleepy lizard—is a gorgeously chunky species, part lizard and part pinecone in appearance, which is found across the southern half of Australia. But it’s what’s on the inside that has captured the attention of researchers. Reptiles in general have immune systems that are unusual from a mammalian perspective; for example, they may rely more heavily on innate immunity and less on adaptive immunity, says University of New Mexico biologist Rob Miller. But the sleepy lizard (along with other scaled reptiles, a group known as squamates), may be even stranger.

Last month, Miller and an international team of scientists published a study in the Journal of Immunology comparing the sleepy lizard’s genome to that of the tuatara (a lizardlike animal that is the closest living relative of the squamates). The work revealed something strange: large deletions in the lizard’s genome resulted in the removal of genes ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Hannah Thomasy, PhD headshot

    Hannah is an Assistant Editor at The Scientist. Her work has appeared in The New York Times, The Daily Beast, and Undark. She earned her PhD in neuroscience from the University of Washington where she studied traumatic brain injury and sleep. She completed the Dalla Lana Fellowship in Global Journalism in 2020. Outside of work, she enjoys running and aspires to be a participant on The Great Canadian Baking Show.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel