Researchers Transplant Human Neurons into Rat Brains

The human cells, engineered to respond to blue light, influenced rat behavior when stimulated.

Written byKatherine Irving
| 2 min read
a section of a rat brain is imaged in dull green. a much brighter green human organoid takes up a large portion of the left side of the brain.
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

For the first time, researchers have successfully transplanted human neurons into the brains of baby rats, they report today (October 12) in Nature. The human cells formed connections with rat neurons and could be used to control the rats’ behavior.

“It’s a very important . . . very cool study,” Yun Li, a molecular geneticist at the University of Toronto who was not involved in the research, tells MIT Technology Review. “The fact that they succeeded in many of these experiments is quite extraordinary.”

To perform human cell experiments, especially when studying the effects of certain drugs, scientists have developed models called organoids: tiny structures grown from stem cells that mimic the human brain or other organs. However, they can’t replicate the complexity of real human neuron development on their own, Science News reports.

In a bid to further organoid development, scientists transplanted human cerebral organoids into the brains of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot of Katherine Irving

    Katherine Irving is an intern at The Scientist. She studied creative writing, biology, and geology at Macalester College, where she honed her skills in journalism and podcast production and conducted research on dinosaur bones in Montana. Her work has previously been featured in Science.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH