Rewritten in Blood

A modified gene-editing technique corrects mutations in human hematopoietic stem cells.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

© GEORGE RETSECKTargeted gene editing is an experimental therapeutic approach that avoids the risk of insertional mutagenesis associated with the more traditional gene-therapy method of adding a functional gene copy to cells. In gene editing, special nuclease enzymes, such as zinc finger nucleases (ZFNs), are directed to cut the mutant gene of interest, and a replacement piece of DNA—containing the desired sequence—is then integrated by means of the cell’s own homology-directed repair pathway.

While the approach has been used to correct mutations in a variety of cell lines, attempts to edit genes in human primary hematopoietic stem cells (HSCs)—important targets for treating a number of inherited blood disorders—have proved unsuccessful.

“The real hurdle was to achieve gene editing in cells relevant for [clinical] translation,” says Luigi Naldini of the San Raffaele Scientific Institute in Milan. The challenge is that homology-directed repair requires cells to be cycling, and, for the most part, HSCs are quiescent. Stimulating HSCs to divide induces differentiation, however, so the team “fine-tuned the conditions” to both expand HSCs and maintain their undifferentiated state, Naldini explains. These tweaks have now allowed his team to use ZFNs to rewrite a disease-causing mutation in HSCs from a patient ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH