SARS-CoV-2 Antigens Leaking from Gut to Blood Might Trigger MIS-C

Researchers find traces of SARS-CoV-2 in the stool and blood of kids with the post–COVID-19 inflammatory disorder, and signs of increased intestinal permeability.

alejandra manjarrez
| 4 min read
A black line drawing of a mother putting a face mask on a child with a white background

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, ANNA SEMENCHENKO

Since the early reports of a severe COVID-19–related condition called multisystem inflammatory syndrome in children a few months into the pandemic, doctors and scientists have joined efforts to understand it, but its cause is still uncertain. According to a study published in The Journal of Clinical Investigation on May 25, researchers propose that it is brought on when viral particles in the gut of these patients make their way into the blood. They found that weeks after an initial SARS-CoV-2 infection, kids had viral RNA in their stool and antigens in their blood along with markers of a leaky gut, suggesting that the trafficking of antigens—specifically, the SARS-CoV-2 spike protein—from the gut to the bloodstream might be driving MIS-C.

This work “adds an additional perspective on the pathogenesis” of this syndrome, says Petter Brodin, a pediatric immunologist at the Karolinska Institute and the Karolinska University ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez, PhD

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours