SARS-CoV-2 Antigens Leaking from Gut to Blood Might Trigger MIS-C

Researchers find traces of SARS-CoV-2 in the stool and blood of kids with the post–COVID-19 inflammatory disorder, and signs of increased intestinal permeability.

Written byAlejandra Manjarrez, PhD
| 4 min read
A black line drawing of a mother putting a face mask on a child with a white background

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, ANNA SEMENCHENKO

Since the early reports of a severe COVID-19–related condition called multisystem inflammatory syndrome in children a few months into the pandemic, doctors and scientists have joined efforts to understand it, but its cause is still uncertain. According to a study published in The Journal of Clinical Investigation on May 25, researchers propose that it is brought on when viral particles in the gut of these patients make their way into the blood. They found that weeks after an initial SARS-CoV-2 infection, kids had viral RNA in their stool and antigens in their blood along with markers of a leaky gut, suggesting that the trafficking of antigens—specifically, the SARS-CoV-2 spike protein—from the gut to the bloodstream might be driving MIS-C.

This work “adds an additional perspective on the pathogenesis” of this syndrome, says Petter Brodin, a pediatric immunologist at the Karolinska Institute and the Karolinska University ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University. After years studying bacteria in a lab, she now spends most of her days reading, writing, and hunting science stories, either while traveling or visiting random libraries around the world. Her work has also appeared in Hakai, The Atlantic, and Lab Times.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies