Setbacks and Great Leaps

The tale of p53, a widely studied tumor suppressor gene, illustrates the inventiveness of researchers who turn mishaps into discoveries.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

BLOOMSBURY SIGMA, FEBRUARY 2015In 2002, Larry Donehower of Baylor College of Medicine in Houston, Texas, was creating a mouse model to explore the workings of the tumor suppressor gene p53 when he made a surprisingly fruitful mistake. Donehower had used an unfamiliar technique to create a mouse with p53 knocked out, and so, instead, he ended up with mice in which the gene was not only still present, but hyperactive. Predictably, his super-p53 critters proved highly resistant to developing tumors. But what no one expected to see was that they aged exceptionally fast: within months their fur was bedraggled and gray, their backs hunched, and they died prematurely, losing about 30 percent of their normal life span.

That aging and cancer were related was common knowledge, since the risk of cancer increases with age. But few suspected they might be two sides of the same coin, sharing a mechanism through which the scales could be tipped either way.

As I researched and wrote p53: The Gene That Cracked the Cancer Code, I became intrigued by how often apparent experimental failures have provided vital clues to unraveling the mysteries of this particular gene. Even the discovery of p53, in 1979, was arguably the result of failure. By coincidence, four different labs, working independently and unaware of each other’s quests, discovered p53 simultaneously. Three were working with the oncogenic monkey virus SV40, trying to isolate the specific viral gene and its protein product responsible ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo