Siobhán Brady Uses Big Data to Investigate Plant Development

The University of California, Davis, professor is a pioneer in teasing apart the changes in gene expression that drive root development.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Siobhán Brady
DAVID SLIPHER, UC DAVIS COLLEGE OF BIOLOGICAL SCIENCES

Metal-heavy grasses were what grabbed Siobhán Brady’s attention. It was the mid-’90s, she was in her first year at the University of Toronto (U of T), and she was learning about grass varieties that can tolerate taking up normally toxic heavy metals. Having grown up in Canada visiting Lake Erie beaches, some of which had to be closed at times to remove metals originating in nearby steel factories from the sand, Brady “was pretty enamored by the fact that you could use a natural part of the environment to be able to fix what humans had done to destroy it,” she says. In this case, the potential solution was growing the grasses in contaminated soil, then harvesting them and disposing of the concentrated contaminants. “I was just totally smitten and decided that this is what I wanted to do for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.

Published In

February 2021

Restoring Reefs

New approaches could accelerate development of outplanted corals

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide