Siobhán Brady Uses Big Data to Investigate Plant Development

The University of California, Davis, professor is a pioneer in teasing apart the changes in gene expression that drive root development.

Written byShawna Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Siobhán Brady
DAVID SLIPHER, UC DAVIS COLLEGE OF BIOLOGICAL SCIENCES

Metal-heavy grasses were what grabbed Siobhán Brady’s attention. It was the mid-’90s, she was in her first year at the University of Toronto (U of T), and she was learning about grass varieties that can tolerate taking up normally toxic heavy metals. Having grown up in Canada visiting Lake Erie beaches, some of which had to be closed at times to remove metals originating in nearby steel factories from the sand, Brady “was pretty enamored by the fact that you could use a natural part of the environment to be able to fix what humans had done to destroy it,” she says. In this case, the potential solution was growing the grasses in contaminated soil, then harvesting them and disposing of the concentrated contaminants. “I was just totally smitten and decided that this is what I wanted to do for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile

Published In

February 2021

Restoring Reefs

New approaches could accelerate development of outplanted corals

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo